Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Adv Sci (Weinh) ; 10(11): e2300188, 2023 04.
Article in English | MEDLINE | ID: covidwho-2294455

ABSTRACT

Male infertility caused by genetic mutations is an important type of infertility. Currently, there is no reliable method in the clinic to address this medical need. The emergence of mRNA therapy provides a possible strategy for restoring mutant genes in the reproductive system. However, effective delivery of mRNA to spermatocytes remains a formidable challenge. Here a series of cholesterol-amino-phosphate (CAP) lipids are reported by integrating three bioactive moieties into a geometric structure, which is favorable for mRNA delivery. The results demonstrate that CAP-derived lipid nanoparticles (CAP LNPs) can deliver RNA including traditional mRNA and self-amplifying RNA (saRNA) encoding DNA Meiotic Recombinase 1 (Dmc1) protein in spermatocytes and treat male infertility caused by the Dmc1 gene mutation. Notably, the delivery efficiency of CAP LNPs is significantly higher than that of the MC3 and ALC-0315 LNPs, which is consistent with the design of CAP molecules. More importantly, a single injection of CAP LNPs-saRNA can produce Dmc1 protein for an extended period, which restores the spermatogenesis in the Dmc1 gene knockout mouse model. Overall, this study proves the concept of LNPs for the delivery of mRNA to spermatocytes, which provides a unique method to probe male infertility caused by the genetic mutation.


Subject(s)
Infertility, Male , RNA , Humans , Mice , Male , Animals , Spermatogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Infertility, Male/genetics , Infertility, Male/therapy , Cholesterol
2.
Nano Lett ; 23(7): 2593-2600, 2023 04 12.
Article in English | MEDLINE | ID: covidwho-2288715

ABSTRACT

Lipid nanoparticle (LNP)-mediated delivery of messenger RNA (mRNA) COVID-19 vaccines has provided large-scale immune protection to the public. To elicit a robust immune response against SARS-CoV-2 infections, antigens produced by mRNAs encoding SARS-CoV-2 Spike glycoprotein need to be efficiently delivered and presented to antigen-presenting cells such as dendritic cells (DCs). As concurrent innate immune stimulation can facilitate the antigen presentation process, a library of non-nucleotide STING agonist-derived amino lipids (SALs) was synthesized and formulated into LNPs for mRNA delivery. SAL12 lipid nanoparticles (SAL12-LNPs) were identified as most potent in delivering mRNAs encoding the Spike glycoprotein (S) of SARS-CoV-2 while activating the STING pathway in DCs. Two doses of SAL12 S-LNPs by intramuscular immunization elicited potent neutralizing antibodies against SARS-CoV-2 in mice.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , COVID-19 Vaccines , RNA, Messenger , Vaccination
3.
Nat Chem Biol ; 18(10): 1056-1064, 2022 10.
Article in English | MEDLINE | ID: covidwho-1960395

ABSTRACT

SARS-CoV-2 entry into cells requires specific host proteases; however, no successful in vivo applications of host protease inhibitors have yet been reported for treatment of SARS-CoV-2 pathogenesis. Here we describe a chemically engineered nanosystem encapsulating CRISPR-Cas13d, developed to specifically target lung protease cathepsin L (Ctsl) messenger RNA to block SARS-CoV-2 infection in mice. We show that this nanosystem decreases lung Ctsl expression in normal mice efficiently, specifically and safely. We further show that this approach extends survival of mice lethally infected with SARS-CoV-2, correlating with decreased lung virus burden, reduced expression of proinflammatory cytokines/chemokines and diminished severity of pulmonary interstitial inflammation. Postinfection treatment by this nanosystem dramatically lowers the lung virus burden and alleviates virus-induced pathological changes. Our results indicate that targeting lung protease mRNA by Cas13d nanosystem represents a unique strategy for controlling SARS-CoV-2 infection and demonstrate that CRISPR can be used as a potential treatment for SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Animals , Cathepsin L , Chemokines , Cytokines , Endopeptidases , Lung/pathology , Mice , Peptide Hydrolases , Protease Inhibitors/pharmacology , RNA, Messenger/genetics , SARS-CoV-2
4.
Adv Mater ; 32(40): e2004452, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-739608

ABSTRACT

SARS-CoV-2 has become a pandemic worldwide; therefore, an effective vaccine is urgently needed. Recently, messenger RNAs (mRNAs) have emerged as a promising platform for vaccination. In this work, the untranslated regions (UTRs) of mRNAs are systematically engineered in order to enhance protein production. Through a comprehensive analysis of endogenous gene expression and de novo design of UTRs, the optimal combination of 5' and 3' UTR are identified and termed NASAR, which are 5- to 10-fold more efficient than the tested endogenous UTRs. More importantly, NASAR mRNAs delivered by lipid-derived TT3 nanoparticles trigger a dramatic expression of potential SARS-CoV-2 antigens. The antigen-specific antibodies induced by TT3-nanoparticles and NASAR mRNAs are over two orders of magnitude more than that induced by the FDA-approved lipid nanoparticle material MC3 in vaccinated mice. These NASAR mRNAs merit further development as alternative SARS-CoV-2 vaccines.


Subject(s)
Antigens, Viral/administration & dosage , Betacoronavirus/immunology , Viral Vaccines , Animals , Antibodies, Viral/metabolism , COVID-19 Vaccines , Cell Line, Tumor , Coronavirus Infections/prevention & control , Female , Gene Expression , HEK293 Cells , Humans , Mice, Inbred C57BL , Nanoparticles , RNA, Messenger , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL